

Migrating from Cisco Catalyst 6500/6800 to 9600 Series Switches

Introduction

The new Cisco® Catalyst® 9000 switching platform is the next generation in the legendary Cisco Catalyst switching family. It is designed for the new era of networking, with ASIC and software innovations to deliver an intent-based network. Within the Cisco Catalyst 9000 switching family, the Cisco Catalyst 9600 Series Switches are Cisco's leading modular enterprise switching core and distribution platform, built for intent-based architecture, security, Internet of Things (IoT), and cloud.

Purpose of this guide

This document is intended to help network planners and engineers who are familiar with the Cisco Catalyst 6500 and 6800 Series to deploy Cisco Catalyst 9600 Series Switches in the enterprise networking environment (Figure 1).

Introduction

Purpose of this guide

Why migrate?

Migration overview

Cisco Catalyst 9606R port density

Supervisor hardware

Cisco Catalyst 9600 Series flexible templates

System default behaviors

Power redundancy

ROMmon and config-register

Operations

Software features

Cisco Catalyst 6000 Series platform-specific commands

Conclusion

Appendix A. IPDT/SISF

Why migrate?

The Cisco Catalyst 9600 Series Switches are Cisco's leading modular core/distribution enterprise switching platform, built for security, IoT, and cloud. These switches form the foundational building block for Software-Defined Access (SD-Access), Cisco's leading intent-based architecture. The platform provides unparalleled investment protection with a chassis architecture that is capable of supporting up to 25.6 Tbps of system bandwidth. The 9600 Series expands the end-to-end Cisco Catalyst 9000 family, further aligning our comprehensive solution with our customer carrying business and network strategies. When you need the most secure, most resilient, and most intelligent network, you need Cisco Catalyst 9600 Series Switches, the industry's first purpose-built modular-configuration 1G, 2.5G, 5G, 10G, 25G, 40G, and 100G line of switches for enterprise-class core and distribution layers.

The Cisco Catalyst 9600 Series offers an industry-leading supervisor engine built for secure networks, loT applications, next-generation mobility, and cloud adoption. Supervisor Engine 1 (C9600-SUP-1) is built with the latest Cisco Unified Access® Data Plane 3.0 (UADP 3.0) Application-Specific Integrated Circuit (ASIC), ready for next-generation technologies with its programmable pipeline, microengine capabilities, and template-based configurable allocation of Layer 2, Layer 3, forwarding, Access Control Lists (ACLs), and Quality-of-Service (QoS) entries.

Migration overview

The Cisco Catalyst 9600 Series Switches with Supervisor Engine 1 use a centralized architecture. All forwarding, security, and queueing is done on the supervisor, while the line cards are considered transparent, with only PHYs and control logic. The simplicity of this centralized design allows easy upgrade of features as well as additional bandwidth by upgrading just the supervisor while keeping the existing line cards. The combination of the centralized architecture and transparent line cards also provides uninterrupted supervisor switchover, which is the foundation for In-Service Software Upgrades (ISSU). With the high-capacity bandwidth provided by the UADP 3.0 ASICs on Supervisor Engine 1, all ports (including 100G) are line rate with the supported configuration. The latency between 100G ports is less than 5 microseconds, which is more than sufficient for any time-sensitive application such as real-time video conferencing and IP telephony.

This guide lists the different considerations when migrating from the Cisco Catalyst 6500/6800 Series to the 9600 Series.

Introduction

Purpose of this guide

Why migrate?

Migration overview

Cisco Catalyst 9606R port density

Supervisor hardware

Cisco Catalyst 9600 Series flexible templates

System default behaviors

Power redundancy

ROMmon and config-register

Operations

Software features

Cisco Catalyst 6000 Series platform-specific commands

Conclusion

Appendix A. IPDT/SISF

Cisco Catalyst 9606R port density

The Cisco Catalyst 9606R is a 6-slot chassis. Two middle slots are dedicated for supervisors only, and they work in redundant mode. The top and bottom two slots are for line cards. The chassis is designed to provide up to 6.4 Tbps from each of the supervisor slots to each of the line card slots. This means the system will be able to provide 32 ports of 100G at line rate per line card slot. In total, the 9606R is capable of providing either:

- 128x line rate 100G/40G ports
- or 192x line rate 25G/10G/5G/2.5G/1G ports.

The Cisco Catalyst 9600 Supervisor Engine 1 is powered with three UADP 3.0 ASICs. The aggregated bandwidth from the three ASICs is 9.6 Tbps. The port density with Supervisor Engine 1 is as follows:

- 48x line rate 100G/40G ports or
- 192x line rate 25G/10G/5G/2.5G/1G ports

Supervisor hardware

The Cisco Catalyst 9600 Supervisor Engine 1 is based on Cisco's UADP 3.0 ASIC architecture and an x86 CPU architecture. Supervisor Engine 1 also provide options for additional internal and external storage, which enables the device to host containers and run third-party applications and scripts natively within the switch. Table 1 compares the hardware of the Cisco Catalyst 6500/6800 and 9600 Series.

Table 1. Hardware comparison

	Cisco Catalyst 6500/6800 Series (Supervisor Engine 6T)	Cisco Catalyst 9600 Series (Supervisor Engine 1)
СРИ	Dual-core x86, 2.5 GHz	8-core x86, 2.0 GHz
SDRAM	4 GB	16 GB
Internal flash	4 GB	16 GB
External storage	4 GB USB	120 GB USB*
Internal storage	Not available	240, 480, or 960 GB

^{*} With Cisco certified USB drives

Introduction

Purpose of this guide

Why migrate?

Migration overview

Cisco Catalyst 9606R port density

Supervisor hardware

Cisco Catalyst 9600 Series flexible templates

System default behaviors

Power redundancy

ROMmon and config-register

Operations

Software features

Cisco Catalyst 6000 Series platform-specific commands

Conclusion

Appendix A. IPDT/SISF

Cisco Catalyst 9600 Series flexible templates

Unlike the supervisor on the Cisco Catalyst 6500/6800 Series, Supervisor Engine 1 on the 9600 Series enables flexible templates for universal deployments by leveraging the ASIC's ability to create resources to optimize table sizes for different purposes in the network. Based on how the switch is used in the network, an appropriate flexible ASIC template may be selected to configure the switch for specific features.

Cisco Catalyst 9600 Supervisor Engine 1 supports the following templates:

- Distribution: Balances resources between Layer 2 and Layer 3
- · Core: Maximizes system resources for unicast and multicast routing
- NAT: Maximizes system resources for Layer 3 and Network Address Translation (NAT)
- SD-Access: Maximizes system resources to support fabric deployment

In the campus, the most commonly deployed design is the three-tiered design: core, distribution, and access. The core layer is based on Layer 3 IP routing and functions as a high-speed interconnection point to other network domains (data center, WAN, branch, etc.). The distribution layer traditionally consists of IP routing upstream to the core and Layer 2 switching downstream to the access layer. The access layer is purely Layer 2 and provides connectivity for the endpoints. With this design, the Core template would be the best fit for the core devices, and the Distribution template is most appropriate for the distribution devices.

The routed access design, which also can be the three-tiered design, moves the Layer 2 and Layer 3 boundaries to the access layer. In this case, the distribution layer is purely Layer 3 and doesn't require the Layer 2 features. In this design, both the core and distribution layer devices should use the Core template.

Introduction

Purpose of this guide

Why migrate?

Migration overview

Cisco Catalyst 9606R port density

Supervisor hardware

Cisco Catalyst 9600 Series flexible templates

System default behaviors

Power redundancy

ROMmon and config-register

Operations

Software features

Cisco Catalyst 6000 Series platform-specific commands

Conclusion

Appendix A. IPDT/SISF

Cisco Catalyst 9600 Supervisor Engine 1 supported templates

Table 2. Characteristics of Supervisor Engine 1 supported templates

Templates	Distribution	Core	NAT	SD-Access
iempiates	(per ASIC)	(per ASIC)	(per ASIC)	(per ASIC)
IPv4/IPv6 routes (LPM/host)	114,000	212,000	212,000	212,000
Multicast routes	16,000	32,000	32,000	32,000
IGMP/MLD snooping	2,000	2,000	2,000	2,000
MAC addresses	82,000	32,000	32,000	32,000
SGT labels	32,000	32,000	32,000	32,000
NetFlow	98,000	64,000	64,000	64,000
Security ACLs	27,000	27,000	20,000	27,000
QoS ACLs	16,000	16,000	8,000	16,000
PBR/NAT	3,000	3,000	15,500	2,000
Tunnel/MACsec	3,000	3,000	2,000	3,000
STP instances	1,000	1,000	1,000	1,000

System default behaviors

The system default behaviors on the Cisco Catalyst 9600 Series are similar to those of the Cisco Catalyst 6500/6800 Series. For example, IP routing is enabled, the management interface is in a dedicated Virtual Routing and Forwarding (VRF) instance, and so on. However, there are also some differences, as described in this section.

Introduction

Purpose of this guide

Why migrate?

Migration overview

Cisco Catalyst 9606R port density

Supervisor hardware

Cisco Catalyst 9600 Series flexible templates

System default behaviors

Power redundancy

ROMmon and config-register

Operations

Software features

Cisco Catalyst 6000 Series platform-specific commands

Conclusion

Appendix A. IPDT/SISF

Table 3. Interface default state

	Cisco Catalyst 6500/6800 Series	Cisco Catalyst 9600 Series
Default port type	Layer 3	Layer 2
Default port state	Off (shutdown)	On (no shutdown)

Table 4. Port-channel default load balance

	Cisco Catalyst 6500/6800 Series	Cisco Catalyst 9600 Series
EtherChannel load balance	EtherChannel Load-Balancing Configuration: src-dst-ip enhanced mpls label-ip EtherChannel Load-Balancing	Balancing Configuration: src-dst-mixed-ip-port EtherChannel Load- Balancing Addresses Used
	Addresses Used Per-Protocol: Non-IP: Source XOR Destination MAC address	Per-Protocol: Non-IP: Source XOR Destination MAC address
	IPv4: Source XOR Destination IP address	IPv4: Source XOR Destination IP address and TCP/UDP (layer-4)
	IPv6: Source XOR Destination IP address MPLS: Label or IP	port number IPv6: Source XOR Destination IP address and TCP/UDP (layer-4) port number

Introduction

Purpose of this guide

Why migrate?

Migration overview

Cisco Catalyst 9606R port density

Supervisor hardware

Cisco Catalyst 9600 Series flexible templates

System default behaviors

Power redundancy

ROMmon and config-register

Operations

Software features

Cisco Catalyst 6000 Series platform-specific commands

Conclusion

Appendix A. IPDT/SISF

Link-status logging: The logging for link-status changes is on by default in the Cisco Catalyst 9600 Series, and the behavior can be changed per interface in the configuration. In the 6500/6800 Series, the logging for link-status changes is off by default and can be changed globally. See Table 5.

Table 5. Link-status logging comparison

	Cisco Catalyst 6500/6800 Series	Cisco Catalyst 9600 Series
Default	Off for all ports	On for all ports
Configuration	Per system	On (no shutdown)
	C6500(config)#logging event link-status global	C9600(config)#int tw 1/0/1 C9600(config-if)#no logging event link-status
	C6500(config)#no logging event link-status global	C9600(config-if)#logging event link-status

Power redundancy

The Cisco Catalyst 9600 Series provides four slots for the power supply, compared to two slots in the 6500/6800 Series. Power supplies can operate in the following two modes:

- Combined mode: This is the default mode. All power supply modules in the system are active and sharing power.
- N+1 redundant mode: The system enters this mode if the output from the N power supply is sufficient.

For more details on power redundancy, please see the Environmental Monitoring and Power Management chapter of the System Management Configuration Guide.

Introduction

Purpose of this guide

Why migrate?

Migration overview

Cisco Catalyst 9606R port density

Supervisor hardware

Cisco Catalyst 9600 Series flexible templates

System default behaviors

Power redundancy

ROMmon and config-register

Operations

Software features

Cisco Catalyst 6000 Series platform-specific commands

Conclusion

Appendix A. IPDT/SISF

ROMmon and config-register

The Cisco Catalyst 9600 Series uses the x86 CPU architecture, which can be used in the future to enable hosting containers and third-party applications. With the CPU architecture change, there are also changes in the ROM monitor (ROMmon).

Prompts and file system

In ROMmon, the prompt on the Cisco Catalyst 9600 Series is "rommon >" and "bootflash:" is the memory partition for local storage. On the Cisco Catalyst 6500/6800 Series, the prompt is "rommon>" and the memory partition for the local storage is "bootdisk:". Table 6 shows outputs in ROMmon from the Cisco Catalyst 6500/6800 and 9600 Series.

Table 6. ROMmon outputs

Cisco Catalyst 6500/6800 Series

```
rommon 20 > dir bootdisk:
File System: FAT32
3
      33554432 -rw-
                         sea console.dat
8195
      162870776 -rw-
                          s6t64-ipservicesk9-mz.SPA.154-1.SY2.bin
       33554432 - rw -
47959
                           sea log.dat
56151
        169094712 -rw-
                            s6t64-adventerprisek9-mz.SPA.153-1.SY2.bin
97434
        7766
                           startup-config.converted vs-20171005-221623
                  -rw-
97436
        13820
                            C6807-D1-SUP6T-VSS-ECMP
                  -rw-
97440
        14171
                            C6807-D1-SUP6T-VSS-VSS
                  -rw-
97444
        14191
                            C6807-D1-S6T-IPV6-VSS-VSS
                  -rw-
                            startup-config.converted vs-20180813-221352
97448
        11151
                  -rw-
97451
        11051
                           startup-config.converted vs-20180813-225913
                  -rw-
rommon 21 >
```


Introduction

Purpose of this guide

Why migrate?

Migration overview

Cisco Catalyst 9606R port density

Supervisor hardware

Cisco Catalyst 9600 Series flexible templates

System default behaviors

Power redundancy

ROMmon and config-register

Operations

Software features

Cisco Catalyst 6000 Series platform-specific commands

Conclusion

Appendix A. IPDT/SISF

Cisco Catalyst 9600 Series

rommon 5	> dir bootflash:	
Size	Attributes Name	
4096	drw-	.installer
962	-rw-	bootloader_evt_handle.log
4096	drw-	.ssh
4096	drw-	core
4096	drw-	.prst_sync
4096	drw-	.rollback_timer
4096	drw-	gs_script
4096	drw-	tech_support
4096	drw-	dc_profile_dir
324	-LM-	boothelper.log
132095	-LM-	memleak.tcl
3	-LM-	.wlc_air_lic
4096	drw-	onep
0	-LM-	rdope_out.txt
91	-LM-	rdope.log
242	-rw-	smart_overall_health.log
35	-rw-	pnp-tech-time
71415	-LM-	pnp-tech-discovery-summary
60556	-rw-	vlan.dat
90523228	-rw-	sf-linux-1017.SSA
25124888	-rw-	issg_v232_1114.zb
4096	drw-	tan
11359240	-LM-	cat9k-cc_srdriver.16.11.01.SPA.pkg

Introduction

Purpose of this guide

Why migrate?

Migration overview

Cisco Catalyst 9606R port density

Supervisor hardware

Cisco Catalyst 9600 Series flexible templates

System default behaviors

Power redundancy

ROMmon and config-register

Operations

Software features

Cisco Catalyst 6000 Series platform-specific commands

Conclusion

Appendix A. IPDT/SISF

84354052	-rw-	cat9k-espbase.16.11.01.SPA.pkg
1676292	-rw-	cat9k-guestshell.16.11.01.SPA.pkg
466576384	-rw-	cat9k-rpbase.16.11.01.SPA.pkg
38552418	-rw-	cat9k-rpboot.16.11.01.SPA.pkg
29877252	-rw-	cat9k-sipbase.16.11.01.SPA.pkg
57259008	-rw-	cat9k-sipspa.16.11.01.SPA.pkg
19936260	-rw-	cat9k-srdriver.16.11.01.SPA.pkg
12321792	-rw-	cat9k-webui.16.11.01.SPA.pkg
9216	-rw-	cat9k-wlc.16.11.01.SPA.pkg
7612	-rw-	packages.conf
4096	drw-	images

Boot variables

The Cisco Catalyst 6500/6800 Series uses the traditional "config-register" command in both Cisco IOS and ROMmon to control the booting behavior. The Cisco Catalyst 9600 Series uses a parallel set of commands in Cisco IOS XE Software, which creates the equivalent ROMmon variables. See Table 7.

Table 7. Boot variables

	Cisco Catalyst 6500/6800 Series	Cisco Catalyst 9600 Series
Cisco IOS Software	Confreg 0x???Y Autoboot if Y!=0	[no] boot manual
ROMmon	Confreg 0x???Y Autoboot if Y!=0	MANUAL_BOOT=[no yes]

Introduction

Purpose of this guide

Why migrate?

Migration overview

Cisco Catalyst 9606R port density

Supervisor hardware

Cisco Catalyst 9600 Series flexible templates

System default behaviors

Power redundancy

ROMmon and config-register

Operations

Software features

Cisco Catalyst 6000 Series platform-specific commands

Conclusion

Appendix A. IPDT/SISF

Baud rate

Table 8. Setting the baud rate

	Cisco Catalyst 6500/6800 Series	Cisco Catalyst 9600 Series
Cisco IOS Software	Confreg 0x???? or Line con 0 Speed 9600	Line con 0 Speed 9600
ROMmon	Confreg Use the interactive prompt to set the baud rate	BAUD=9600

"Break" processing

At the beginning of the bootup process, the user can use Ctrl+C to break out of the booting process and drop the system back into ROMmon if the break sequence is enabled. See Table 9.

Table 9. "Break" processing

	Cisco Catalyst 6500/6800 Series	Cisco Catalyst 9600 Series
Cisco IOS Software	Confreg 0x????	[no] boot enable-break
ROMmon	Confreg Use the interactive prompt to set the baud rate	ENABLE_BREAK=[no yes]

Introduction

Purpose of this guide

Why migrate?

Migration overview

Cisco Catalyst 9606R port density

Supervisor hardware

Cisco Catalyst 9600 Series flexible templates

System default behaviors

Power redundancy

ROMmon and config-register

Operations

Software features

Cisco Catalyst 6000 Series platform-specific commands

Conclusion

Appendix A. IPDT/SISF

Ignoring the startup configuration

Table 10. Ignoring the startup configuration

	Cisco Catalyst 6500/6800 Series	Cisco Catalyst 9600 Series
Cisco IOS Software	Confreg 0x8000 or 0x0040	C9400(config)#system ignore startupconfig C9400(config)#no system ignore startupconfig
ROMmon	Confreg Use the interactive prompt to enable/ disable ignore startup configuration	SWITCH_IGNORE_STARTUP_ CFG=1

Operations

Interface reference

The Cisco Catalyst 6500/6800 Series has two levels of interface numbering:

interface <Type><Slot#>/<Port#>.

The 9600 Series has three levels:

interface <Type><Slot#>/<Bay#>/<Port#>.

As of Release 16.12.1, the bay number is unused and is always 0. For example, FortyGigabit Ethernet port 1 on slot 1 is referenced as Fo1/1 in the 6500/6800 Series and as Fo1/0/1 in the 9600 Series. See Table 11.

Table 11. Interface numbering

	Cisco Catalyst 6500/6800 Series	Cisco Catalyst 9600 Series
TenGigabit Ethernet	TenGigabitEthernet1/1	Te1/0/1
FortyGigabit Ethernet	FortyGigabitEthernet5/1	Fo5/0/1

Introduction

Purpose of this guide

Why migrate?

Migration overview

Cisco Catalyst 9606R port density

Supervisor hardware

Cisco Catalyst 9600 Series flexible templates

System default behaviors

Power redundancy

ROMmon and config-register

Operations

Software features

Cisco Catalyst 6000 Series platform-specific commands

Conclusion

Appendix A. IPDT/SISF

Management interface

The management interface on the Cisco Catalyst 9600 Series can be a copper Gigabit Ethernet or fiber 10 Gigabit Ethernet interface. The Cisco Catalyst 6500/6800 Supervisor Engine 6T provides copper or fiber Gigabit Ethernet. The management port on both platforms has its own VRF for separation of management traffic from normal data traffic. However, the name of the VRF for the management port is different between the 9600 Series and 6500/6800 Series. Note also that the names of the VRFs are case sensitive. Table 12 lists the management port differences between the two platforms.

Table 12. Management interfaces and VRF names

	Cisco Catalyst 6500/6800 Series	Cisco Catalyst 9600 Series
Interface	Mgmt0	GigabitEthernet0/0 TenGigabitEther0/1
VRF	management	Mgmt-vrf

Software features

For details on the software features supported on the Cisco Catalyst 9600 Series, please use the feature navigator on Cisco.com. Some of the features behave differently on the 9600 Series compared to the 6500/6800 Series. Following are some of these differences.

System Maximum Transmission Unit (MTU)

System MTU is a Layer 2 MTU. On the Cisco Catalyst 9600 Series, the global command "system mtu <1500-9216>" changes the Layer 2 MTU on all the interfaces within the system. There is no support for an interface-level command to set the MTU for individual interfaces as of Cisco IOS XE Software Release 16.12.1. On the Cisco Catalyst 6500/6800 Series, the global command "system jumbo <1500-9216>" sets the global baby giant MTU for all interfaces. The default system jumbo MTU is 9216. The 6500/6800 Series also supports a per-interface MTU. The per-interface MTU command takes precedence. See Table 13.

Introduction

Purpose of this guide

Why migrate?

Migration overview

Cisco Catalyst 9606R port density

Supervisor hardware

Cisco Catalyst 9600 Series flexible templates

System default behaviors

Power redundancy

ROMmon and config-register

Operations

Software features

Cisco Catalyst 6000 Series platform-specific commands

Conclusion

Appendix A. IPDT/SISF

Table 13. System MTU

	Cisco Catalyst 6500/6800 Series	Cisco Catalyst 9600 Series
"system jumbomtu <>"	Changes Layer 2 MTU on all interfaces	N/A
"system mtu"	N/A	Changes Layer 2 MTU on all interfaces
System jumbomtu/ MTU value	1500 to 9216	1500 to 9216
Interface-level MTU (layer 2)	Range "1500 to 9216"Takes precedence over system MTU	Range "1500 to 9216"Takes precedence over system MTU

StackWise virtual

The Cisco Catalyst 6500/6800 Series supports a Virtual Switching System (VSS) that combines two physical switches into a single logical switch. The equivalent functionality on the 9600 Series is Cisco StackWise® Virtual. StackWise Virtual and VSS have the same functionalities but different implementations.

Port-channel load balancing

The Cisco Catalyst 9600 Series provides additional combinations of different header fields as input for port-channel load balancing. Table 14 lists the supported load-balancing methods for the 6500/6800 and 9600 Series.

Introduction

Purpose of this guide

Why migrate?

Migration overview

Cisco Catalyst 9606R port density

Supervisor hardware

Cisco Catalyst 9600 Series flexible templates

System default behaviors

Power redundancy

ROMmon and config-register

Operations

Software features

Cisco Catalyst 6000 Series platform-specific commands

Conclusion

Appendix A. IPDT/SISF

Table 14. Port-channel load balancing

Cisco Catalyst 6500	/6800 Series	Cisco Catalyst 9600 S	eries
C6500E:		C9600:	
dst-ip	Dst IP Addr	dst-ip	Dst IP Addr
dst-mac	Dst Mac Addr	dst-mac	Dst Mac Addr
dst-mixed-ip-port Port	Dst IP Addr and TCP/UDP	dst-mixed-ip-port Port	Dst IP Addr and TCP/ UDP
dst-port	Dst TCP/UDP Port	dst-port	Dst TCP/UDP Port
mpls packets	Load Balancing for MPLS		
		extended	Load Balance Methods
src-dst-ip	Src XOR Dst IP Addr	src-dst-ip	Src XOR Dst IP Addr
src-dst-mac	Src XOR Dst Mac Addr	src-dst-mac	Src XOR Dst Mac Addr
<pre>src-dst-mixed-ip- port TCP/UDP Port</pre>	Src XOR Dst IP Addr and	<pre>src-dst-mixed-ip- port TCP/UDP Port</pre>	Src XOR Dst IP Addr and
src-dst-port	Src XOR Dst TCP/UDP Port	src-dst-port	Src XOR Dst TCP/UDP Port
src-ip	Src IP Addr	src-ip	Src IP Addr
src-mac	Src Mac Addr	src-mac	Src Mac Addr
src-mixed-ip-port Port	Src IP Addr and TCP/UDP	<pre>src-mixed-ip-port Port</pre>	Src IP Addr and TCP/ UDP
src-port	Src TCP/UDP Port	src-port	Src TCP/UDP Port
vlan-dst-ip	Vlan, Dst IP Addr	vlan-dst-ip	Vlan, Dst IP Addr
vlan-dst-mixed- ip-port TCP/UDP Port	Vlan, Dst IP Addr and	vlan-dst-mixed-ip- port TCP/UDP Port	Vlan, Dst IP Addr and
vlan-src-dst-ip	Vlan, Src XOR Dst IP Addr	vlan-src-dst-ip	Vlan, Src XOR Dst IP Addr

Introduction

Purpose of this guide

Why migrate?

Migration overview

Cisco Catalyst 9606R port density

Supervisor hardware

Cisco Catalyst 9600 Series flexible templates

System default behaviors

Power redundancy

ROMmon and config-register

Operations

Software features

Cisco Catalyst 6000 Series platform-specific commands

Conclusion

Appendix A. IPDT/SISF

Cisco Catalyst 6500	/6800 Series	Cisco Catalyst 9600 S	eries
vlan-src-dst- mixed-ip-port and TCP/UDP Port	Vlan, Src XOR Dst IP Addr	vlan-src-dst- mixed-ip-port and TCP/UDP Port	Vlan, Src XOR Dst IP Addr
vlan-src-ip	Vlan, Src IP Addr	vlan-src-ip	Vlan, Src IP Addr
vlan-src-mixed- ip-port TCP/UDP Port	Vlan, Src IP Addr and	vlan-src-mixed-ip- port TCP/UDP Port	Vlan, Src IP Addr and

The "extended" option on the Cisco Catalyst 9600 Series provides additional combinations of different fields:

C96000 (config) #port-channel load-balance extended ?

dst-ip Dest IP
dst-mac Dest MAC
dst-port Dest Port
ipv6-label IPV6 Flow Label
13-proto L3 Protocol
src-ip Src IP
src-mac Src MAC
src-port Src Port
<cr>
C96000(config)#

Port-channel services

Table 15. Port-channel services

Cisco Catalyst 6500/6800 Series	Cisco Catalyst 9600 Series
QoS policies are configured on the port-channel interfaces	QoS policies are configured on the individual port-channel member ports
Port ACLs (PACLs) are configured on the port-channel interfaces	PACLs are configured on the individual port-channel member ports

Introduction

Purpose of this guide

Why migrate?

Migration overview

Cisco Catalyst 9606R port density

Supervisor hardware

Cisco Catalyst 9600 Series flexible templates

System default behaviors

Power redundancy

ROMmon and config-register

Operations

Software features

Cisco Catalyst 6000 Series platform-specific commands

Conclusion

Appendix A. IPDT/SISF

Virtualization: VNET

The Cisco Catalyst 6500 Series supports the Easy Virtual Network (EVN) feature, which uses VNET. This feature is no longer available on the Cisco Catalyst 9000 switch family. The alternative is to configure VRF-Lite with subinterfaces, which are supported on the 9600 Series switches.

Host tracking feature

The Cisco Catalyst 6500/6800 Series supports IP Device Tracking (IPDT) for keeping track of connected hosts (association of MAC and IP addresses). In the Cisco Catalyst 9600 Series with the latest Cisco IOS XE release, the new Switch Integrated Security Features (SISF)-based IPDT feature acts as a container policy that enables snooping and device-tracking features available with First Hop Security (FHS) in both IPv4 and IPv6, using IP-agnostic Command-Line Interface (CLI) commands. See Appendix A for more information on migrating from the IPDT CLI configuration to the new SISF-based device-tracking CLI configuration.

Access control lists

Object group ACLs: Both the Cisco Catalyst 6500/6800 Series and 9600 Series support object group ACLs. There are, however, syntax differences. Table 16 shows some examples of object group ACLs with source and destination port groups.

Table 16. Object group ACLs

Object group ACL features	Cisco Catalyst 6500/6800 Series	Cisco Catalyst 9600 Series
Object group ACL with source port group	object-group ip address g1 host 10.20.20.1 host 10.20.21.1 object-group ip port p1 gt 100 lt 200 ip access-list extended test1 permit tcp host 1.1.1.1 port-group p1 adrgroup g1	object-group network g1 host 10.20.20.1 host 10.20.21.1 object-group service p1 tcp source gt 100 tcp source lt 200 ip access-list extended test1 permit object-group p1 host 1.1.1.1 object-group g1

Introduction

Purpose of this guide

Why migrate?

Migration overview

Cisco Catalyst 9606R port density

Supervisor hardware

Cisco Catalyst 9600 Series flexible templates

System default behaviors

Power redundancy

ROMmon and config-register

Operations

Software features

Cisco Catalyst 6000 Series platform-specific commands

Conclusion

Appendix A. IPDT/SISF

Object group ACL features	Cisco Catalyst 6500/6800 Series	Cisco Catalyst 9600 Series
Object group ACL with destination port	object-group ip address g2 host 10.30.20.1 host 10.30.21.1	object-group network g2 host 10.30.20.1 host 10.30.21.1
group	object-group ip port p2 gt 300 lt 400	object-group service p2 tcp gt 300 tcp lt 400
	<pre>ip access-list extended test2 permit tcp host 1.1.1.1 addrgroup g2 port-group p2</pre>	permit object-group p2 host
Object group ACL with source and destination port groups	object-group ip address g1 host 10.20.20.1 host 10.20.21.1 object-group ip port p1 gt 100 lt 200 object-group ip address g2 host 10.30.20.1 host 10.30.21.1 object-group ip port p2 gt 300 lt 400 ip access-list extended test3 permit tcp addrgroupt g1 portgroup p1 addrgroup g2 portgroup p2	host 10.20.20.1 host 10.20.21.1 object-group service p3 tcp source gt 100 gt 300 tcp source gt 100 lt 400 tcp source lt 200 gt 300 tcp source lt 200 lt 400 object-group network g2 host 10.30.20.1 host 10.30.21.1 ip access-list extended test3

Introduction

Purpose of this guide

Why migrate?

Migration overview

Cisco Catalyst 9606R port density

Supervisor hardware

Cisco Catalyst 9600 Series flexible templates

System default behaviors

Power redundancy

ROMmon and config-register

Operations

Software features

Cisco Catalyst 6000 Series platform-specific commands

Conclusion

Appendix A. IPDT/SISF

Object group ACL features	Cisco Catalyst 6500/6800 Series	Cisco Catalyst 9600 Series
Object group ACL with "established" keyword	object-group ip address g4 10.22.33.0 255.255.255.0 10.33.44.0 255.255.255.0 object-group ip port p4 eq 500 eq 600 ip access-list extended test4 permit tcp addrgroup g4 portgroup p4 10.30.40.0 0.0.0.255 established	object-group network g4 10.22.33.0 255.255.255.0 10.33.44.0 255.255.255.0 ip access-list extended test4 permit tcp object-group g4 eq 500 10.30.40.0 0.0.0.255 established permit tcp object-group g4 eq 600 10.30.40.0 0.00.255 established

Note: To view the expanded ACL for object group ACLs, enable "service internal" and use the command "show ip access-list list name> expand."

Access group mode: When PACLs are applied to the physical port, VLAN ACLs (VACLs) are applied to the VLAN, and Router ACLs (RACLs) are applied to the Switch Virtual Interface (SVI), the Cisco Catalyst 6000 Series offers options to merge all three ACLs with the option "merge mode" or to ignore VACLs and RACLs with the option "prefer port mode." With the 9600 Series, the ACLs will always be applied in the following order: PACL, VACL, and then RACL.

TCAM exhaustion

In the Cisco Catalyst 6000 Series, once the Access Control Entries (ACE) exceed the maximum free available Ternary Content Addressable Memory (TCAM) spaces, ACL reduction will occur, and any traffic hitting the overflowed ACL will be software switched.

In the Cisco Catalyst 9000 family, the overflowed ACL will not be programmed and will have a default of "deny all" for the overflowed ACL.

Introduction

Purpose of this guide

Why migrate?

Migration overview

Cisco Catalyst 9606R port density

Supervisor hardware

Cisco Catalyst 9600 Series flexible templates

System default behaviors

Power redundancy

ROMmon and config-register

Operations

Software features

Cisco Catalyst 6000 Series platform-specific commands

Conclusion

Appendix A. IPDT/SISF

Flexible NetFlow

Both the Cisco Catalyst 9600 Series and 6500/6800 Series support Flexible NetFlow. Beside the scalability differences, there are a few configuration differences. They are listed in Table 17.

Table 17. Flexible NetFlow differences

	Cisco Catalyst 6500/6800 Series	Cisco Catalyst 9600 Series
Timestamp	Use system uptime	Use absolute time [0 is at time 00:00:00 January 1, 1970]
NetFlow on port channel	Configuration under port channel	Configuration under member of port channel
Bridged traffic	Apply the flow monitor to the Layer 2 interface with keyword "layer2-switched"	Apply the flow monitor to a VLAN
NetFlow on tunnel	Supported	Not supported
NetFlow collect options: collect routing next-hop address ipv4 collect ipv4 source prefix collect ipv4 source mask collect ipv4 destination mask collect flow sampler	Supported	<roadmap></roadmap>

Introduction

Purpose of this guide

Why migrate?

Migration overview

Cisco Catalyst 9606R port density

Supervisor hardware

Cisco Catalyst 9600 Series flexible templates

System default behaviors

Power redundancy

ROMmon and config-register

Operations

Software features

Cisco Catalyst 6000 Series platform-specific commands

Conclusion

Appendix A. IPDT/SISF

Embedded Logic Analyzer Module (ELAM)

The Cisco Catalyst 6500/6800 Series supports the ELAM feature, which captures packets in real time on the switch without disruptions to performance. The more comprehensive feature on the Cisco Catalyst 9600 Series is Wireshark.

The following are the differences between the 6500/6800 Series ELAM and the 9600 Series Wireshark:

- The ELAM feature configures and displays commands through show commands only. In Wireshark capture, configuration is through the monitor-level CLI and display is though show commands.
- ELAM is capable of packet capture at the ASIC level, whereas packet capture occurs at the interface level with Wireshark.
- ELAM captures only the first packet that hits the switch that matches the configuration. Wireshark is capable of capturing packets over a duration.
- · Wireshark can capture both data plane and control plane packets.

Switched Port Analyzer (SPAN) filter

Both the Cisco Catalyst 6500/6800 and 9600 Series support SPAN filters. The 6500/6800 Series supports a filter option of "good/bad," which isn't supported on the 9600 Series.

Quality of Service (QoS)

The ASICs that power the Cisco Catalyst 65006800 and 9600 Series are different, so there are some differences in QoS behaviors, as described below.

Hardware rate limiters

On the Cisco Catalyst 6500/6800 Series, the "platform rate-limit" command enables rate limiting in hardware. All rate limiting or policing is done in hardware with the 9600 Series, so this command is not needed.

Introduction

Purpose of this guide

Why migrate?

Migration overview

Cisco Catalyst 9606R port density

Supervisor hardware

Cisco Catalyst 9600 Series flexible templates

System default behaviors

Power redundancy

ROMmon and config-register

Operations

Software features

Cisco Catalyst 6000 Series platform-specific commands

Conclusion

Appendix A. IPDT/SISF

Control plane policing

Control Plane Policing (CoPP) is enabled on the Cisco Catalyst 9600 Series, with default policing rates for different classes of traffic. These policing rates are optimized for a typical campus environment. The policing rates can be changed or disabled to meet the requirements of different application environments. On the Cisco Catalyst 6500/6800 Series with Supervisor Engine 2T or 6T, CoPP is also enabled by default and can be disabled. The 6500/6800 Series also allows class maps under CoPP to be added, modified, or removed. Table 18 lists the differences between the two platforms.

Table 18. CoPP differences

	Cisco Catalyst 6500/6800 Series	Cisco Catalyst 9600 Series
Default	Enabled (can be disabled)	Enabled (can't be disabled, but policing rates can be modified)
CoPP class map	Can be added, modified, or removed	System predefined
Policing rate	Can be modified	Can be modified

Table 19 lists the buffer differences between the Cisco Catalyst 9600 Supervisor Engine 1 and the Cisco Catalyst 6500 Supervisor Engine 6T.

Table 19. Buffers

	Cisco Catalyst 6500 Supervisor Engine 2T	Cisco Catalyst 9600 Supervisor Engine 1
Buffer	Varies depending on the line card	3x36 MB
Policing rate	Buffers are dedicated per port	Buffer sharing is within the ASIC; there are 3 ASICs in Supervisor Engine 1

Introduction

Purpose of this guide

Why migrate?

Migration overview

Cisco Catalyst 9606R port density

Supervisor hardware

Cisco Catalyst 9600 Series flexible templates

System default behaviors

Power redundancy

ROMmon and config-register

Operations

Software features

Cisco Catalyst 6000 Series platform-specific commands

Conclusion

Appendix A. IPDT/SISF

Cisco Catalyst 6000 Series platform-specific commands

Table 20 lists commands that are specific to the Cisco Catalyst 6000 Series and are not available on the 9600 Series.

Table 20. Cisco Catalyst 6500/6800 Series platform-specific commands

Cisco Catalyst 6500/6800 Series	Cisco Catalyst 9600 Series
mls <>	Not applicable; the 9600 Series provides hardware-enabled feature by default
Auto qos default	Auto qos global compact
diagnostic fpga soft-error recover conservative	Not applicable
ntp update-calendar	clock calendar-valid
ip device tracking	Please see Appendix A
Platform ip cef load-sharing full	Not applicable
Flow hardware usage notify <>	Not applicable
Flow hardware usage notify <>	Not applicable
Vlan internal allocation policy asending	Not applicable
Vlan access-log ratelimit <>	Not applicable
lp domain-name	Ip domain name
lp domain-lookup	Ip domain lookup

Conclusion

The Cisco Catalyst 9600 Series Switches are Cisco's leading modular enterprise switching core and distribution platforms. They are the new generation of the core and distribution platform and provide many additional capabilities, making them well suited for enterprises looking to migrate from their existing Cisco Catalyst 6500/6800 Series deployment.

Introduction

Purpose of this guide

Why migrate?

Migration overview

Cisco Catalyst 9606R port density

Supervisor hardware

Cisco Catalyst 9600 Series flexible templates

System default behaviors

Power redundancy

ROMmon and config-register

Operations

Software features

Cisco Catalyst 6000 Series platform-specific commands

Conclusion

Appendix A. IPDT/SISF

© 2020 Cisco and/or its affiliates. All rights reserved. Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R) C07-742784-01 06/20

Appendix A. IPDT/SISF

If your device has no legacy IP device tracking or IPv6 snooping configurations, you can use only the new SISF-based device-tracking commands for all your future configurations. The legacy IPDT commands and IPv6 snooping commands are not available.

IPDT, IPv6 snooping, and device-tracking CLI compatibility

Table 21 displays the new SISF-based device-tracking commands and the corresponding IPDT and IPv6 snooping commands.

Table 21. Device-tracking and corresponding IPDT and IPv6 snooping commands

Table 21. Device ducking and conseponding if D1 and if V0 shooping commands		
IP Device Tracking (IPDT)	IPv6 snooping	SISF-based device tracking
IP device tracking probe count	Not supported	Not supported
IP device tracking probe delay	IPv6 neighbor binding reachable-lifetime	Device-tracking policy reachable-lifetime
IP device tracking probe interval	IPv6 snooping tracking retry-interval	Device-tracking policy retry-interval
IP device tracking probe use-svi	Accepted and interpreted as IP device tracking probe auto-source override	Accepted and interpreted as IP device tracking probe auto-source override
IP device tracking probe auto-source fallback	Not supported	Not supported
IP device tracking probe auto-source override	Not supported	Not supported
IP device tracking tracebuffer	Not supported	Not supported
IP device tracking maximum	IPv6 snooping policy <name> limit</name>	Device-tracking snooping policy <name> limit</name>
IP device tracking probe count	Not supported	Not supported
IP device tracking probe interval	Not supported	Not supported
Clear ip device tracking all	Not supported	Not supported